22 research outputs found

    Effects of 3D Deployments on Interference and SINR in 5G New Radio Systems

    Get PDF
    Lately, the extremely high frequency (EHF) band has become one of the factors enabling fifth-generation (5G) mobile cellular technologies. By offering large bandwidth, New Radio (NR) systems operating in the lower part of EHF band, called millimeter waves (mmWave), may satisfy the extreme requirements of future 5G networks in terms of both data transfer rate and latency at the air interface. The use of highly directional antennas in prospective mmWave-based NR communications systems raises an important question: are conventional two-dimensional (2D) cellular network modeling techniques suitable for 5G NR systems? To address this question, we introduced a novel, three-dimensional framework for evaluating the performance of emerging mmWave band wireless networks. The proposed framework explicitly takes into account the blockage effects of propagating mmWave radiation, the vertical and planar directivities at transceiver antennas, and the randomness of user equipment (UE), base station (BS), and blocker heights. The model allows for different levels of accuracy, encompassing a number of models with different levels of computational complexity as special cases. Although the main metric of interest in this thesis is the signal-to-interference-plus-noise ratio (SINR), the model can be extended to obtain the Shannon rate of the channel under investigation. The proposed model was numerically evaluated in different deployment cases and communication scenarios with a wide range of system parameters. We found that randomness of UE and BS heights and vertical directionality of the mmWave antennas are essential for accurate evaluation of system performance. We also showed that the results of traditional 2D models are too optimistic and greatly overestimate the actual SINR. In contrast, fixed-height models that ignore the impact of height on the probability of exposure to interference are too pessimistic. Furthermore, we evaluated the models that provide the best trade-off between computational complexity and accuracy in specific scenarios and provided recommendations regarding their use for practical assessment of mmWave-based NR systems

    Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT

    Get PDF
    Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as device-to-device (D2D) caching helpers. With the goal to improve reliability of high-rate millimeter-wave (mmWave) data connections, we introduce the alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability

    DECT-2020 New Radio: The Next Step Towards 5G Massive Machine-Type Communications

    Get PDF
    Massive machine type communications (mMTC) is one of the cornerstone services that have to be supported by 5G systems. 3GPP has already introduced LTE-M and NB-IoT, often referred to as cellular IoT, in 3GPP Releases 13, 14, and 15 and submitted these technologies as part of 3GPP IMT-2020 (i.e., 5G) technology submission to ITU-R. Even though NB-IoT and LTE-M have shown to satisfy 5G mMTC requirements defined by ITU-R, it is expected that these cellular IoT solutions will not address all aspects of IoT and ongoing digitalization, including the support for direct communication between "things" with flexible deployments, different business models, as well as support for even higher node densities and enhanced coverage. In this paper, we introduce the DECT-2020 standard recently published by ETSI for mMTC communications. We evaluate its performance and compare it to the existing LPWAN solutions showing that it outperforms those in terms of supported density of nodes while still keeping delay and loss guarantees at the required level.Comment: Author-Submitted Paper to IEEE Communications Magazine, 7 pages, 4 figures, 2 table

    In-Network Dynamic Compute Orchestration over Mobile Edge Systems

    Get PDF
    In this paper, we propose a new service orchestration approach for in-network fully distributed dynamic compute composition with limited involvement from the consumer and no centralized coordinator. The service is composed fully inside the network including assembling data and software, and compute node selection, leveraging standardized NDN functionalities. The use of the proposed approach will enable smooth support of dynamic compute services over wireless/mobile edge and edge/fog NDN-based systems, where the use of conventional IP approach faces fundamental difficulties related to dynamic allocation of IP addresses. We will also outline extensions of the proposed approach for streaming data, function chaining and re-use of partially computed results. Our numerical results show that the proposed method improves service reliability at the edge by increasing the Interest satisfaction by 5-10 times depending on the considered deployment, network topology, and resources.Peer reviewe

    Effects of 3D Deployments on Interference and SINR in 5G New Radio Systems

    No full text
    Lately, the extremely high frequency (EHF) band has become one of the factors enabling fifth-generation (5G) mobile cellular technologies. By offering large bandwidth, New Radio (NR) systems operating in the lower part of EHF band, called millimeter waves (mmWave), may satisfy the extreme requirements of future 5G networks in terms of both data transfer rate and latency at the air interface. The use of highly directional antennas in prospective mmWave-based NR communications systems raises an important question: are conventional two-dimensional (2D) cellular network modeling techniques suitable for 5G NR systems? To address this question, we introduced a novel, three-dimensional framework for evaluating the performance of emerging mmWave band wireless networks. The proposed framework explicitly takes into account the blockage effects of propagating mmWave radiation, the vertical and planar directivities at transceiver antennas, and the randomness of user equipment (UE), base station (BS), and blocker heights. The model allows for different levels of accuracy, encompassing a number of models with different levels of computational complexity as special cases. Although the main metric of interest in this thesis is the signal-to-interference-plus-noise ratio (SINR), the model can be extended to obtain the Shannon rate of the channel under investigation. The proposed model was numerically evaluated in different deployment cases and communication scenarios with a wide range of system parameters. We found that randomness of UE and BS heights and vertical directionality of the mmWave antennas are essential for accurate evaluation of system performance. We also showed that the results of traditional 2D models are too optimistic and greatly overestimate the actual SINR. In contrast, fixed-height models that ignore the impact of height on the probability of exposure to interference are too pessimistic. Furthermore, we evaluated the models that provide the best trade-off between computational complexity and accuracy in specific scenarios and provided recommendations regarding their use for practical assessment of mmWave-based NR systems

    Analyzing the impact of ITS mobile node antenna HPBW on primary network SINR

    Get PDF
    The development of communication systems worldwide provides an additional load on both licensed and unlicensed spectrum. One of the biggest segments influencing the unlicensed one is Intelligent Transportation Systems (ITS) as part of the Smart City paradigm. One of the potential solutions to reduce the interference picture is by improving the spatial reuse of the system, i.e., by utilizing directional antennas on the vehicle side. This work aims to analyze the radiation pattern spatial characteristics of the antenna installed on the vehicle to be developed for cases when static ITS infrastructure nodes are located on the roadside light poles and primary network operating in the same frequency range is located in different locations: same light pole; roadside unit; or building. As a result, the recommendations regarding the antenna parameters are given for each case.Peer reviewe

    Quantifying the millimeter wave new radio base stations density for network slicing with prescribed SLAs

    Get PDF
    Network slicing is expected to become an integral part of future 5G systems providing a simple mechanism for physical network operators to diversify their business models. New Radio (NR) technology operating in millimeter wave (mmWave) band is one of the critical bearers for this functionality, providing extraordinary capacity at the air interface. This paper provides a mathematical tool for assessing the upper and lower bounds of NR BS density needed to maintain the requested slice rate guarantees. The upper bound corresponds to the full traffic isolation between slices while the lower one — to the full mixing of traffic from the slices. To this aim, we unite the tools of stochastic geometry and queuing theory formulating a performance evaluation framework that allows assessing the rate violation metrics in a dynamic network slicing environment. The developed framework captures specifics of mmWave NR technology, including antenna directivity at the UE and NR BS sides, propagation and blockage losses, as well as the service process with location-dependent resource requirements. Our results show that for considered schemes, the operational regime of the system changes abruptly with respect to the density of NR BSs. The difference between full isolation and full mixing schemes becomes bigger in environments with high session arrival intensities that naturally require dense deployments. Thus, at the initial market penetration phase, full isolation can be used without compromising the network performance. However, at mature stages, more complex schemes are needed to reduce the capital expenditures of the operators.acceptedVersionPeer reviewe

    Performance Analysis of Mixture of Unicast and Multicast Sessions in 5G NR Systems

    Get PDF
    3GPP New Radio (NR) air interface operating in a millimeter wave frequency band is expected to provide the main bearer service in the fifth generation (5G) mobile systems. Compensating for high propagation losses by using high gain antennas at both user equipment † (UE) and access point (AP) sides these systems will greatly benefit from highly directional transmission serving unicast sessions. However, highly directional nature of NR communications may affect the conventional service procedures of multicast sessions in wireless networks as more than a single transmission may be required to serve UEs in the same multicast group. Accounting for random resource requirements induced by locations of UEs as well as human blockage phenomenon, we develop a model for performance analysis of 5G NR systems serving a mixture of unicast and multicast sessions. The main performance metrics of interest are drop probabilities of unicast and multicast sessions. The proposed model, complemented with antenna models and beam-steering procedure, can be further used to determine optimal AP intersite distance for 3GPP NR systems.acceptedVersionPeer reviewe

    Socially inspired relaying and proactive mode selection in mmWave vehicular communications

    Get PDF
    As the Internet of Vehicles matures and acquires its social flavor, novel wireless connectivity enablers are being demanded for reliable data transfer in high-rate applications. The recently ratified New Radio communications technology operates in millimeter-wave (mmWave) spectrum bands and offers sufficient capacity for bandwidth-hungry services. However, seamless operation over mmWave is difficult to maintain on the move, since such extremely high frequency radio links are susceptible to unexpected blockage by various obstacles, including vehicle bodies. As a result, proactive mode selection, that is, migration from infrastructure- to vehicle-based connections and back, is becoming vital to avoid blockage situations. Fortunately, the very social structure of interactions between the neighboring smart cars and their passengers may be leveraged to improve session continuity by relaying data via proximate vehicles. This paper conceptualizes the socially inspired relaying scenarios, conducts underlying mathematical analysis, continues with a detailed 3-D modeling to facilitate proactive mode selection, and concludes by discussing a practical prototype of a vehicular mmWave platform.acceptedVersionPeer reviewe

    Applying blockchain technology for user incentivization in mmWave-Based mesh networks

    Get PDF
    Wireless traffic produced by modern mobile devices displays high temporal and spatial dynamics as users spontaneously engage in collective applications where a significant portion of generated data remains localized. As a result, conventional service provisioning approaches may no longer be sufficient in beyond fifth generation (B5G) systems. The challenge of increased dynamics on the access networks can be mitigated with moving cells. However, the deployment time of these temporary serving entities may lag behind the service demand lifetime. Another viable solution to offload excessive cellular traffic is to rely upon locally available radio resources offered by user devices via direct mmWave-based mesh interworking. An important challenge in such systems is related to the incentivization of users to partake in collaborative resource sharing. To leverage multi-hop mesh capabilities, we propose the use of emerging blockchain technology that offers cryptographically-strong accounting while maintaining the anonymity of the participants. With system-level evaluations, we demonstrate that the utilization of mobile blockchain methods allows for a non-incremental improvement in the offloading gains. This demonstrates the potential of the outlined proposal for becoming a successful mechanism in the emerging B5G systems.publishedVersionPeer reviewe
    corecore